Model Change Bulletin (MCB) 11 AERMET version 21DRF (December 7, 2021), listed by change type

AERMET 21DRF represents a complete update of the AERMET code from version 21112. New subroutines have been written and all previous subroutines have been deleted. While most changes will fall under enhancements there have been two bugs corrected since AERMET 21112. Listed with each change are the affected AERMET stages and data types (Upper air, National Weather Service (NWS), ONSITE (site-specific observed), or PROG (prognostic data).

Bug Fixes

Item	Modification	Stage	Data Type
1	Correct hourly site-specific precipitation values.	3	ONSITE or
	Previous versions of AERMET did not reset output		PROG
	hourly precipitation so hours that were missing had		
	the precipitation value for the previous occurrence		
	of the precipitation for the hour.		
2	Smooth the mechanical mixing height for each	3	ONSITE or
	based on the previous hour's mixing height.		PROG
	Previously, this was only done for calculated		
	mixing heights and not site-specific mixing heights.		
	The AERMOD Model Formulation and Evaluation		
	document specifies that the mixing heights should		
	be smoothed regardless of whether the mixing		
	height is calculated or read from site-specific data.		

Enhancements

Item	Modification	Stage	Data Type
1	AERMET is now a two-stage process instead of a	2	All
	three-stage process. The merge stage, stage 2 in		
	previous versions of AERMET has been eliminated		
	and the previous Stage 3 is now Stage 2. If the		
	MERGE pathway is found in the AERMET control		
	file, AERMET will ignore the associated keywords.		
	Likewise, if AERMET encounters the DATA		
	keyword with the METPREP pathway, AERMET		
	will ignore the DATA keyword and associated file		
	(old Stage 2 output)		
2	AERMET can now run stage 1 and 2 in one single	All	All
	AERMET run instead of separate runs as with		
	previous AERMET versions. Each stage can still be		
	run separately.		
3	EXTRACT and QAOUT files are now optional	All	All
	when running stage 1 and 2 in the same AERMET		
	run		
4	AERMET will now keep the case (lower or upper	All	All
	case) of any input or output files, instead of		
	assuming all uppercase for filenames. This makes		
	the code more portable for Linux operating systems		
	as Linux systems are case sensitive while DOS		
	systems are case insensitive.	2	ONGUE
5	A new averaging option for vector averaging of	2	ONSITE or
	winds has been added to Stage 1 for sub-hourly site-		PROG
	specific data. The user invokes the option by		
	specifying the word VECTOR after the number of		
	observations per hour with the OBS_HOUR keyword. The default averaging is a scalar average		
6	Surface data checked against XDATES after	1	NWS
U	conversion from GMT to LST and hour 00-23 to 01-	1	INWB
	24		
7	A new upper air data source, the Integrated Global	1	Upper air
,	Radiosonde Archive (IGRA), has been added in	1	opper un
	addition to the 6201 and FSL formats		
8	A debug option has been added to help in diagnosing	All	All
-	calculated variables or report additional details on		
	ISHD processing or upper-air calculated variables		
9	Addition of a new pathway, PROG for prognostic	All	PROG
	data. The PROG pathway is analogous to the		
	ONSITE pathway and uses the same keywords. The		
	PROG pathway is utilized for prognostic data to		
	allow for processing of certain variables when the		
	application is overwater versus overland. When		

		1	
	using the PROG pathway, AERMET will output a		
	text string to the AERMET OUTPUT file in the		
	header and for each hour denoting that the data is		
	prognostic. This allows AERMOD to know the data		
10	is prognostic	4.11	DD O G
10	New ONSITE variables have been added as input	All	PROG
	variables for overwater processing for the PROG		
	pathway		
11	New optional parameter to denote overland or	All	ONSITE or
	overwater data for DATA keyword for the ONSITE		PROG
	or PROG pathway. The optional parameter informs		
	AERMET which input variables to use in		
	calculations. Overland data is valid for both the		
	ONSITE and PROG pathway, but overwater is only		
	valid for the PROG pathway.		
12	If using prognostic data over water, AERMET will	2	NWS,
	use the Monin-Obukhov length to determine the		ONSITE or
	stability for the hour. If overland or input Monin-		PROG
	Obukhov length is missing for the hour, the standard		
	solar angle approach is used to determine stability		
13	AERMET now allows for the specification of year	2	NWS,
	specific surface characteristics via the FREQ_SECT,		ONSITE or
	FREQ_SECT2, AERSURF, and AERSURF2		PROG
	keywords. This allows for a multi-year AERMET		
	run for stage 2 in one AERMET run instead of		
	separate annual AERMET runs when surface		
	characteristics change on an annual basis.		
14	For seasonal surface characteristics only, AERMET	2	NWS,
	uses the primary and secondary station coordinates		ONSITE or
	to determine the hemisphere of the respective		PROG
	station. This is used to allocate the seasonal		
	characteristics to the appropriate months based on		
	the hemisphere.		
•			•

Miscellaneous

Item	Modification	Stage	Data Type
1	Years associated with XDATES must be 4-digit	All	All
	years		
2	Stage 1 EXTRACT and QAOUT files have different	1	All
	formats between AERMET 21DRF and previous		
	versions. The ONSITE QAOUT file now has a		
	consistent format whereas before the QAOUT file		
	followed the format of the raw input file		
3	The 3280 format for SURFACE data has been	1	NWS
	dropped due to being obsolete		
4	The no persistence keyword, NOPERS, used for	2	NWS,
	cloud cover and temperature substitution for hours		ONSITE or
	23 and 24 in METPREP are now obsolete. These		PROG
	keywords were present because previous versions of		
	AERMET processed each day separately within the		
	program and previous versions could not read ahead		
	to the next day to allow for hours 23 and 24		
	interpolation. Based on the recoding of AERMET,		
	AERMET can now read the next day's observations		
	so hours 23 and 24 can be interpolated in the same		
	manner as other hours in the day		
5	In previous versions of AERMET, when processing	2	NWS
	NWS data, if hour 24 was completely missing from		
	the stage 2 output, i.e., the hour was not in the raw		
	data file in stage 1, AERMET would copy hour 23		
	(if available) to hour 24 for the day. This is no		
	longer done in 21DRF AERMET so hour 24 may be		
	missing in the final AERMET output or temperature		
	and cloud cover may be substituted from hour 23 of		
	the same day and hour 1 or 2 of the next day. This		
	change could result in differences for hours 24, 1,		
	and 2 when comparing 21DRF AERMET to		
	previous versions of AERMET	A 11	A 11
6	Real variables are now processed as double	All	All
7	precision variables) MATIC
7	NWS wind speeds associated with variable wind	2	NWS
	directions are not corrected for truncation in Stage 2		
	as done in previous versions of AERMET		